Câu hỏi:
2 năm trước

Cho \(x;y\) là hai số thực dương thỏa  mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có

\(\begin{array}{l}P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\\ \Leftrightarrow Pxy - P{y^2} = {x^2} + 3{y^2}\\ \Leftrightarrow \left( {P + 3} \right){y^2} - Pxy + {x^2} = 0\end{array}\)

Phương trình trên có nghiệm khi

\(\begin{array}{l}\Delta  = {P^2}{x^2} - 4\left( {P + 3} \right){x^2} \ge 0\\ \Leftrightarrow {P^2} - 4P - 12 \ge 0\\ \Rightarrow \left[ \begin{array}{l}P \ge 6\\P \le  - 2\end{array} \right. \Rightarrow MinP = 6\end{array}\)

Dấu bằng xáy ra khi \(\left\{ \begin{array}{l}y = \dfrac{{Px}}{{2\left( {P + 3} \right)}} = \dfrac{x}{3}\\\dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}} = 6\end{array} \right. \Rightarrow x = 3y\)

Dễ thấy \(x=3y\) thỏa mãn điều kiện bài cho vì:

$\begin{array}{l}
{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^3}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {2^{3y}} + \frac{1}{{{2^{3y}}}} + {3.2^y}.\frac{1}{{{2^y}}}.\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\\
\Leftrightarrow 0 < 3\left( {{2^y} + \frac{1}{{{2^y}}}} \right)
\end{array}$

Bđt trên luôn đúng với mọi \(y>0\).

Hướng dẫn giải:

Đưa biểu thức cần tìm giá trị nhỏ nhất về dạng phương trình bậc hai ẩn y.

Câu hỏi khác