Câu hỏi:
2 năm trước
Cho \({x_1}\) là số tự nhiên thỏa mãn \(\left( {5x - 38} \right):19 = 13\) và \({x_2}\) là số tự nhiên thỏa mãn \(100 - 3\left( {8 + x} \right) = 1\). Khi đó \({x_1} + {x_2}\) bằng
Trả lời bởi giáo viên
Đáp án đúng: b
+ Ta có \(\left( {5x - 38} \right):19 = 13\)
\(5x - 38 = 13.19\)
\(5x - 38 = 247\)
\(5x = 247 + 38\)
\(5x = 285\)
\(x = 285:5\)
\(x = 57\)
Vậy \({x_1} = 57.\)
+ Ta có \(100 - 3\left( {8 + x} \right) = 1\)
\(3\left( {8 + x} \right) = 100 - 1\)
\(3\left( {8 + x} \right) = 99\)
\(8 + x = 99:3\)
\(8 + x = 33\)
\(x = 33 - 8\)
\(x = 25.\)
Vậy \({x_2} = 25\)
Khi đó \({x_1} + {x_2} = 57 + 25 = 82.\)
Hướng dẫn giải:
Tìm \({x_1}\) và \({x_2}\) sau đó tính tổng \({x_1} + {x_2}\)