Câu hỏi:
2 năm trước

Cho tứ diện $ABCD.$ Gọi $M, N, P, Q$ lần lượt là trung điểm của các cạnh $AB, AD, CD, BC.$ Mệnh đề nào sau đây là sai ?

Trả lời bởi giáo viên

Đáp án đúng: a
Lời giải - Đề kiểm tra 15 phút chương 7: Quan hệ song song trong không gian - Đề số 1 - ảnh 1

Ta có: $MN, PQ$ lần lượt là đường trung bình của tam giác $ABD$ và $CBD$ nên

$MN // BD ;$ \(MN = \dfrac{1}{2}BD\) và $ PQ // BD ;$ \(PQ = \dfrac{1}{2}BD\)

\( \Rightarrow \) $MN // PQ$ và $MN = PQ$

Do đó $MNPQ $ là hình bình hành nên $MP,NQ$ cùng thuộc một mặt phẳng.

Vậy A sai.

Hướng dẫn giải:

- Đưa về cùng mặt phẳng.

- Sử dụng các tính chất đường trung bình của tam giác.

Câu hỏi khác