Cho tam giác ABC vuông ở A. Tia phân giác của góc B cắt AC ở E.
\(\widehat C - \widehat B = {26^0}\). Tính \(\widehat {AEB}\) và $\widehat {BEC}$.
Trả lời bởi giáo viên
Theo giả thiết \(\widehat C - \widehat B = {26^0}\).
Mặt khác do tam giác $ABC$ vuông tại $A$ nên \(\widehat B + \widehat C = {90^ \circ }\)
Từ đó ta có \(\widehat C = \dfrac{{90^\circ + 26^\circ }}{2} = {58^0} \Rightarrow \widehat B = {32^0}\).
Do $BE$ là tia phân giác của góc $ABC$ nên \(\widehat {{B_1}} = \widehat {{B_2}} = {16^0}\)
Sử dụng tinh chất góc ngoài của tam giác ta tìm được \(\widehat {AEB} = \widehat C + \widehat {{B_2}} = {58^0} + 16^\circ = 74^\circ .\)
Và \(\widehat {BEC} = \widehat A + \widehat {{B_1}} = 106^\circ .\)
Vậy \(\widehat {AEB} = 74^\circ ;\,\widehat {BEC} = 106^\circ .\)
Hướng dẫn giải:
Sử dụng tính chất góc ngoài của tam giác, tính chất tổng ba góc của tam giác.