Câu hỏi:
1 năm trước
Cho tam giác $ABC$ vuông cân ở $A.$ Trên đáy $BC$ lấy hai điểm $M,N$ sao cho $BM = CN = AB.$
Tam giác \(AMN\) là tam giác gì?
Trả lời bởi giáo viên
Đáp án đúng: a
Do tam giác $ABC$ vuông cân ở $A$ nên \(\widehat B = \widehat C = {45^0}\).
Xét tam giác $AMB$ có: $BM = BA(gt),$ nên tam giác $AMB$ cân ở $B.$
Do đó $\widehat {AMB} = \dfrac{{{{180}^0} - \widehat B}}{2}$$ = \dfrac{{{{180}^0} - {{45}^0}}}{2} = {67^0}30'$
Chứng minh tương tự ta được tam giác $ANC$ cân ở $C$ và \(\widehat {ANC} = {67^0}30'\).
Xét tam giác $AMN$ có: \(\widehat {AMN} = \widehat {ANM} = {67^0}30'\), do đó tam giác $AMN$ cân ở $A.$
Hướng dẫn giải:
Để chứng minh tam giác $AMN$ cân, ta chứng minh hai góc ở đáy bằng nhau \(\widehat {AMN} = \widehat {ANM}\).