Cho tam giác \(ABC\) có \(AB = AC = BC,\) phân giác \(BD\) và \(CE\) cắt nhau tại \(O.\) Tính \(\widehat {BOC}.\)
Trả lời bởi giáo viên
Vì \(BD\) và \(CE\) là tia phân giác của góc \(\widehat {ABC}\) và \(\widehat {ACB}\) nên \(\widehat {ABD} = \widehat {CBD}\) và \(\widehat {ACE} = \widehat {BCE}.\)
Xét tam giác \(ABD\) và tam giác \(CBD\) có:
+ \(AB = AC\,\left( {gt} \right)\)
+ \(\widehat {ABD} = \widehat {CBD}\) (cmt)
+ Cạnh \(BD\) chung
Suy ra \(\Delta ABD = \Delta CBD\,\left( {c - g - c} \right)\)\( \Rightarrow \widehat {BCA} = \widehat {BAC}\) (hai góc tương ứng) (1)
Tương tự ta có \(\Delta BCE = \Delta ACE\left( {c - g - c} \right)\) \( \Rightarrow \widehat {CBA} = \widehat {BAC}\) (hai góc tương ứng) (2)
Từ (1) và (2) ta có \(\widehat {ABC} = \widehat {BAC} = \widehat {ACB}\). Mà \(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \) (định lý tổng ba góc của tam giác) nên \(\widehat {ABC} = \widehat {BAC} = \widehat {ACB} = \frac{{180^\circ }}{3} = 60^\circ .\)
Lại có \(\widehat {ABD} = \widehat {CBD}\) (cmt) nên \(\widehat {CBO} = \frac{{\widehat {ABC}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \); \(\widehat {ACE} = \widehat {BCE} = \frac{{\widehat {ACB}}}{2} = \frac{{60^\circ }}{2} = 30^\circ .\)
Xét tam giác \(BOC\) có \(\widehat {BOC} + \widehat {OBC} + \widehat {OCB} = 180^\circ \) (định lý tổng ba góc của một tam giác)
Nên \(\widehat {BOC} = 180^\circ - 30^\circ - 30^\circ = 120^\circ .\)
Vậy \(\widehat {BOC} = 120^\circ .\)
Hướng dẫn giải:
Sử dụng tính chất tia phân giác, tính chất hai góc kề bù và định lý tổng ba góc trong tam giác.