Câu hỏi:
1 năm trước
Cho tam giác ABC cân tại đỉnh A với \(\widehat A = {80^0}\). Trên hai cạnh AB, AC lần lượt lấy hai điểm D và E sao cho AD = AE. Phát biểu nào sau đây là sai?
Trả lời bởi giáo viên
Đáp án đúng: d
Do tam giác ABC cân tại A nên \(\widehat B = \frac{{{{180}^0} - \widehat A}}{2} = \frac{{{{180}^0} - {{80}^0}}}{2} = {50^0}\)
Ta thấy tam giác ADE cân do AD = AE
\( \Rightarrow \widehat {ADE} = \frac{{{{180}^0} - \widehat A}}{2} = \frac{{{{180}^0} - {{80}^0}}}{2} = {50^0}\)
Do đó \(\widehat B = \widehat {ADE}\) .
Mà hai góc này ở vị trí so le trong nên ED // BC ( Dấu hiệu nhận biết 2 đường thẳng song song)
Vậy D là đáp án sai.
Hướng dẫn giải:
Sử dụng tính chất tam giác cân, tính chất tổng các góc của một tam giác, dấu hiệu nhận biết hai đường thẳng song song