Câu hỏi:
1 năm trước

Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(BC\) lấy điểm \(M,\) trên tia đối của tia \(CB\) lấy điểm \(N\) sao cho \(MB = NC.\) Kẻ \(BE \bot AM\,\left( {E \in AM} \right);CF \bot AN\,\left( {F \in AN} \right)\).

Tam giác \(AMN\) là tam giác gì?

Trả lời bởi giáo viên

Đáp án đúng: b

\(\Delta ABC\) cân tại \(A\) nên \(AB = AC,\,\widehat {ABC} = \widehat {ACB}\)     (1)

Mặt khác: \(\widehat {ABM} + \widehat {ABC} = {180^o}\) (kề bù)      (2)

                 \(\widehat {ACN} + \widehat {ACB} = {180^o}\) (kề bù)       (3)

Từ (1), (2) và (3) suy ra \(\widehat {ABM} = \widehat {ACN}\).

Xét \(\Delta ABM\) và \(\Delta ACN\) có:

\(AB = AC\,\,(cmt)\)

\(\widehat {ABM} = \widehat {ACN}\,\,(cmt)\)

\(BM = CN\,\,(gt)\)

\( \Rightarrow \Delta ABM = \Delta ACN\,\,(c.g.c)\)

\( \Rightarrow AM = AN\) (hai cạnh tương ứng).

\( \Rightarrow \Delta AMN\) cân tại \(A.\)

Hướng dẫn giải:

- Sử dụng trường hợp bằng nhau thứ hai của tam giác để chứng minh \(\Delta ABM = \Delta ACN\), từ đó suy ra hai cạnh tương ứng bằng nhau để suy ra điều phải chứng minh.

Câu hỏi khác