Cho số phức \(z\) có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là
Trả lời bởi giáo viên
Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối ta có
\(\left| {|z| - |3i|} \right| \le |z + 3i| \le \left| {|z| + |3i|} \right| \Leftrightarrow |2 - 3| \le |w| \le |2 + 3| \Leftrightarrow 1 \le |w| \le 5\)
Nhận thấy với \(z = - 2i\) thì \(\left| w \right| = 1\) và với \(z = 2i\) thì \(\left| w \right| = 5\) nên \(1\) và \(5\) là GTNN và GTLN của \(\left| w \right|\).
Hướng dẫn giải:
Áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối: \(\left| A \right| - \left| B \right| \le \left| {A \pm B} \right| \le \left| A \right| + \left| B \right|\).
Đặc biệt $\left| {\left| A \right| - \left| B \right|} \right| \leqslant \left| {A \pm B} \right| \leqslant \left| A \right| + \left| B \right|$