Câu hỏi:
2 năm trước
Cho \(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\). Chọn câu đúng.
Trả lời bởi giáo viên
Đáp án đúng: a
\(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\)
\(S = \left( {\dfrac{1}{{21}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{26}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{31}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \left( {\dfrac{1}{{25}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{30}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{35}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \dfrac{1}{5} + \dfrac{1}{6} + \dfrac{1}{7} = \dfrac{{107}}{{210}} > \dfrac{1}{2}\)
Vậy \(S > \dfrac{1}{2}\).
Hướng dẫn giải:
Ta chia thành 3 nhóm, mỗi nhóm 5 số hạng. Sau đó đánh giá để kết luận.