Cho khai triển ${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n}$ với $x > 0.$ Biết tổng hệ số của ba số hạng đầu tiên của khai triển là $631.$ Tìm hệ số của số hạng chứa ${x^5}.$
Trả lời bởi giáo viên
Theo khai triển nhị thức Newton, ta có
${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} .{\left( {\sqrt {{x^3}} } \right)^{n\, - \,k}}.{\left( {\dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^k} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3\left( {n\, - \,k} \right)}}{2}}}.{x^{ - \,\frac{{2k}}{3}}} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3n}}{2} - \frac{{13k}}{6}}}.$
Suy ra tổng hệ số của 3 số hạng đầu tiên của khai triển là ${3^0}.C_n^0 + {3^1}.C_n^1 + {3^2}.C_n^2 = 631$
$ \Leftrightarrow 1 + 3n + \dfrac{{9n\left( {n - 1} \right)}}{2} = 631 \Rightarrow n = 12.$ Khi đó ${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^{12}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} {.3^k}.{x^{18\, - \,\frac{{13k}}{6}}}.$
Hệ số của số hạng chứa ${x^5}$ ứng với $18-\dfrac{13k}{6}=5\Leftrightarrow k=6\,\,\xrightarrow{{}}$ Hệ số cần tìm là $C_{12}^6{.3^6}.$
Hướng dẫn giải:
- Tìm $n$ bằng các công thức ${P_n} = n!;\,\,A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}$ và $C_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!.k!}}.$
- Sử dụng công thức tổng quát ${{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}\,\,\xrightarrow{{}}$ Tìm hệ số của số hạng cần tìm.