Cho hình vuông ABCD cạnh a, tâm O. Gọi M là điểm tùy ý trên đường tròn nội tiếp hình vuông. Tính $\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MC} .\overrightarrow {MD} $.
Trả lời bởi giáo viên
Ta có
$\begin{array}{l}\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MC} .\overrightarrow {MD} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO} + \overrightarrow {OC} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OD} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2M{O^2} + \overrightarrow {OA} .\overrightarrow {OB} + \overrightarrow {OC.} \overrightarrow {OD} + \overrightarrow {MO} \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right).\end{array}$
Có \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 ;\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
\(\overrightarrow {OA} \bot \overrightarrow {OB} \Rightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0,\overrightarrow {OC} \bot \overrightarrow {OD} \Rightarrow \overrightarrow {OC} .\overrightarrow {OD} = 0\)
Đường tròn nội tiếp hình vuông cạnh a có bán kính \(\dfrac{a}{2} \Rightarrow MO = \dfrac{a}{2} \Rightarrow M{O^2} = \dfrac{{{a^2}}}{4}.\)
Vậy $\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MC} .\overrightarrow {MD} = 2.\dfrac{{{a^2}}}{4} = \dfrac{{{a^2}}}{2}$
Hướng dẫn giải:
Đưa biểu thức cần tính về các tích vô hướng đặc biệt của hình vuông