Cho hình lập phương \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right),A'\left( {0;0;1} \right)\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khoảng cách giữa \(MN\) và \(A'C\) là:
Trả lời bởi giáo viên
Gọi \(C\left( {x;y;z} \right)\) ta có:
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 - 0 = x - 0\\0 - 0 = y - 1\\0 - 0 = z - 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\\z = 0\end{array} \right. \Rightarrow C\left( {1;1;0} \right)\)
Lại có
\(\begin{array}{l}M\left( {\dfrac{1}{2};0;0} \right),N\left( {\dfrac{1}{2};1;0} \right) \Rightarrow \overrightarrow {MN} = \left( {0;1;0} \right),\overrightarrow {A'C} = \left( {1;1; - 1} \right),\overrightarrow {MA'} = \left( { - \dfrac{1}{2};0;1} \right)\\ \Rightarrow \left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\1\end{array}&\begin{array}{l}0\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\ - 1\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}1\\1\end{array}\end{array}} \right|} \right) = \left( { - 1;0; - 1} \right)\end{array}\)
Vậy \(d\left( {MN,A'C} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right].\overrightarrow {MA'} } \right|}}{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right]} \right|}} = \dfrac{{\left| {\left( { - 1} \right).\left( { - \dfrac{1}{2}} \right) + 0.0 + \left( { - 1} \right).1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{1}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 }}{4}\)
Hướng dẫn giải:
- Tìm tọa độ điểm \(C\), sử dụng tính chất \(\overrightarrow {AB} = \overrightarrow {DC} \).
- Tính các véc tơ \(\overrightarrow {MN} ,\overrightarrow {A'C} \).
- Sử dụng công thức tính khoảng cách giữa hai đường thẳng \(d\left( {\Delta ,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)