Câu hỏi:
1 năm trước

Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $O$  và $O'$  lần lượt là tâm \(ABCD;\,A'B'C'D'\) . Hai mp $(ACC'A')$ và mp $\left( {BDD'B'} \right)$ cắt nhau theo đường nào?

Trả lời bởi giáo viên

Đáp án đúng: a

Gọi $O$  là giao điểm của $AC$  và $BD$ . Ta có \(O \in AC\) nên \(O \in {\rm{mp}}\left( {ACC'A'} \right)\), \(O \in BD\) nên \(O \in {\rm{mp}}\left( {BDD'B'} \right)\), do đó $O$  thuộc cả hai mặt phẳng trên. (1)

Gọi \(O'\)  là giao điểm của \(A'C'\)  và  \(B'D'\) .

Chứng minh tương tự, \(O'\)  thuộc cả hai mặt phẳng trên.  (2)

Từ (1) và (2) suy ra hai mặt phẳng $(ACC'A')$ và mp $\left( {BDD'B'} \right)$ cắt nhau theo đường thẳng \(OO'\) .

Hướng dẫn giải:

Tìm đoạn thẳng thuộc cả hai mặt phẳng.

Câu hỏi khác