Câu hỏi:
2 năm trước

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AB = a,$ $BC = 2a.$ Tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy. Mặt phẳng $\left( \alpha  \right)$ đi qua $S$ vuông góc với $AB.$ Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha  \right)$ với hình chóp đã cho.

Trả lời bởi giáo viên

Đáp án đúng: b

Gọi H là trung điểm $AB \Rightarrow SH \bot AB.$ Suy ra:

\( \bullet \) $SH \subset \left( \alpha  \right)$.

\( \bullet \) $SH \bot \left( {ABCD} \right)$ (do $\left( {SAB} \right) \bot \left( {ABCD} \right)$ theo giao tuyến $AB$).

Kẻ $HM \bot AB{\rm{ }}\left( {M \in CD} \right) \Rightarrow HM \subset \left( \alpha  \right).$

Do đó thiết diện là tam giác SHM vuông tại H.

 

Ta có $SH = \dfrac{{a\sqrt 3 }}{2}$, $HM = BC = 2a.$ Vậy ${S_{\Delta SHM}} = \dfrac{1}{2}.\dfrac{{a\sqrt 3 }}{2}.2a = \dfrac{{{a^2}\sqrt 3 }}{2}.$

Lời giải - Đề kiểm tra giữa học kì 2 - Đề số 2 - ảnh 1

Hướng dẫn giải:

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, tứ giác cụ thể là tính diện tích đa giác

Câu hỏi khác