Cho hình chóp \(S.ABC\) có đáy \(ABC\) vuông tại \(A\) và \(SB\) vuông góc với đáy. Biết \(SB = a,SC\) hợp với \(\left( {SAB} \right)\) một góc \({30^0}\) và \(\left( {SAC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({60^0}\). Thể tích khối chóp là:
Trả lời bởi giáo viên
Ta có:
\(\left. \begin{array}{l}AC \bot AB\\AC \bot SB\,\,\left( {SB \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow AC \bot \left( {SAB} \right) \Rightarrow AC \bot SA\)
\( \Rightarrow SA\) là hình chiếu vuông góc của $SC$ trên $\left( {SAB} \right) \Rightarrow \widehat {\left( {SC;\left( {SAB} \right)} \right)} = \widehat {\left( {SC;SA} \right)} = \widehat {CSA} = {30^0}$
\(\left. \begin{array}{l}\left( {SAC} \right) \cap \left( {ABC} \right) = AC\\\left( {SAC} \right) \supset SA \bot AC\\\left( {ABC} \right) \supset AB \bot AC\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SA;AB} \right)} = \widehat {SAB} = {60^0}\)
\(SB \bot \left( {ABC} \right) \Rightarrow SB \bot AB \Rightarrow \Delta SAB\) vuông tại $B$
\( \Rightarrow AB = SB.\cot {60^0} = a.\dfrac{1}{{\sqrt 3 }} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow SA = \sqrt {S{B^2} + A{B^2}} = \sqrt {{a^2} + \dfrac{{{a^2}}}{3}} = \dfrac{{2a}}{{\sqrt 3 }}\)
Xét tam giác vuông $SAC$ ta có: \(AC = SA.\tan {30^0} = \dfrac{{2a}}{{\sqrt 3 }}.\dfrac{1}{{\sqrt 3 }} = \dfrac{{2a}}{3}\)
\({S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}\dfrac{{a\sqrt 3 }}{3}.\dfrac{{2a}}{3} = \dfrac{{{a^2}\sqrt 3 }}{9}\)
\({V_{S.ABC}} = \dfrac{1}{3}SB.{S_{ABC}} = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{9} = \dfrac{{{a^3}\sqrt 3 }}{{27}}\)
Hướng dẫn giải:
- Xác định góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\), sử dụng định nghĩa góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
- Xác định góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABC} \right)\), sử dụng định nghĩa góc giữa hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến.
- Tính diện tích đáy \({S_{\Delta ABC}}\) và chiều cao \(h = SB\).
- Tính thể tích khối chóp theo công thức \(V = \dfrac{1}{3}Sh\).