Cho góc nhọn $xOy.$ Trên tia $Ox$ lấy hai điểm $A,C,$ trên tia $Oy$ lấy hai điểm $B,D$ sao cho $OA = OB,OC = OD$ ($A$ nằm giữa $O$ và $C,$$B$ nằm giữa $O$ và $D$ ).
So sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)
Trả lời bởi giáo viên
Vì \(\Delta OAD = \Delta OBC\,\left( {c - g - c} \right).\) Suy ra \(\widehat {OBC} = \widehat {OAD}\) (hai góc tương ứng bằng nhau)
Lại có \(\widehat {OBC} + \widehat {CBD} = 180^\circ ;\,\widehat {OAD} + \widehat {DAC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {CBD} = 180^\circ - \widehat {OBC}\) và \(\widehat {CAD} = 180^\circ - \widehat {OAD}\) mà \(\widehat {OBC} = \widehat {OAD}\) (cmt)
Suy ra \(\widehat {CBD} = \widehat {CAD}.\)
Hướng dẫn giải:
Sử dụng tính chất hai tam giác bằng nhau ở ý trước suy ra hai góc tương ứng bằng nhau
Sau đó sử dụng tính chất hai góc kề bù hoặc góc ngoài để so sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)