Trả lời bởi giáo viên

Đáp án đúng: a
Lời giải - Đề kiểm tra 45 phút chương 6: Đường tròn - Đề số 2 - ảnh 1

Gọi G là giao điểm của tia DF và tia EM.

Ta có \(\angle EFD = {90^o}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow EF \bot DG\) mà \(EF \bot OM\) (cmt)

\( \Rightarrow OM//DG\) (từ vuông góc đến song song)

Tam giác EDG có \(OE = OD\,\,;\,\,OM//DG\,\, \Rightarrow ME = MG\)(tính chất đường trung bình)

Áp dụng định lý Ta-let cho tam giác EDM có \(PK//ME\) (cùng vuông góc với ED) ta được:   \(\dfrac{{PK}}{{ME}} = \dfrac{{DP}}{{DM}}\)     (3)

Áp dụng định lý Ta-let cho tam giác MDG có \(PF//MG\) (cùng vuông góc với ED) ta được:   \(\dfrac{{PF}}{{MG}} = \dfrac{{DP}}{{DM}}\)     (4)

Từ (3) và (4) suy ra   \(\dfrac{{PK}}{{ME}} = \dfrac{{PF}}{{MG}}\)  mà  \(ME = MG\) (cmt)

\( \Rightarrow PK = PF\,\, \Rightarrow \)  P là trung điểm của FK. Suy ra \(FP = PK = \dfrac{4}{2} = 2cm\)

Hướng dẫn giải:

Kéo dài DF và EM cắt nhau tại G từ đó sử dụng định lý Ta-let để chứng minh.

Câu hỏi khác