Trả lời bởi giáo viên
Đáp án đúng: b
Vì $OC$ vuông góc với $AB$ nên $D$ là trung điểm của $AB$ (mối quan hệ giữa đường kính và dây)
$ \Rightarrow AD = \dfrac{{AB}}{2} = \dfrac{{12}}{2} = 6cm$.
Xét tam giác $AOD$ vuông tại $D$ nên $O{D^2} = O{A^2} - A{D^2} = {10^2} - {6^2} = 64 \Rightarrow OD = 8cm$.
Có $OD + DC = OC$ nên $DC = OC - OD = 10 - 8 = 2cm$.
Xét tam giác $ADC$ vuông tại $D$ nên $A{C^2} = A{D^2} + D{C^2} = {6^2} + {2^2} = 40$ .
Vậy $AC = 2\sqrt {10} cm$.
Hướng dẫn giải:
Dựa vào tính chất bán kính vuông góc với dây cung.
Dựa vào định lí Pi-ta-go trong tam giác vuông.