Cho dãy số $({u_n})$xác định bởi $\left\{ \begin{array}{ccccc}u _{1} = 1\\{u_{n + 1}} = \sqrt {{u_n}\left( {{u_n} + 1} \right)\left( {{u_n} + 2} \right)\left( {{u_n} + 3} \right) + 1} ,\,\,\left( {n \ge 1} \right)\end{array} \right.\,\,$. Đặt ${v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{{u_i} + 2}}} $. Tính $\lim {v_n}$bằng?
Trả lời bởi giáo viên
${u_2} = \sqrt {1.2.3.4 + 1} = 5,$ ${u_n} > 0,\forall n = 1;2;...$
Ta có:
$\begin{array}{l}{u_{n + 1}} = \sqrt {{u_n}\left( {{u_n} + 1} \right)\left( {{u_n} + 2} \right)\left( {{u_n} + 3} \right) + 1} = \sqrt {\left( {u_n^2 + 3{u_n}} \right)\left( {u_n^2 + 3{u_n} + 2} \right) + 1} \\ = \sqrt {{{\left( {u_n^2 + 3{u_n}} \right)}^2} + 2\left( {u_n^2 + 3{u_n}} \right) + 1} = \sqrt {{{\left( {u_n^2 + 3{u_n} + 1} \right)}^2}} = u_n^2 + 3{u_n} + 1\\ \Rightarrow {u_{n + 1}} + 1 = u_n^2 + 3{u_n} + 2 = \left( {{u_n} + 1} \right)\left( {{u_n} + 2} \right)\\ \Rightarrow \dfrac{1}{{{u_{n + 1}} + 1}} = \dfrac{1}{{\left( {{u_n} + 1} \right)\left( {{u_n} + 2} \right)}} = \dfrac{1}{{{u_n} + 1}} - \dfrac{1}{{{u_n} + 2}}\\ \Rightarrow \dfrac{1}{{{u_n} + 2}} = \dfrac{1}{{{u_n} + 1}} - \dfrac{1}{{{u_{n + 1}} + 1}}\end{array}$
Do đó:
\({v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{{u_i} + 2}} = } \sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{u_i} + 1}} - \dfrac{1}{{{u_{i + 1}} + 1}}} \right)}\) \( = \dfrac{1}{{{u_1} + 1}} - \dfrac{1}{{{u_{n + 1}} + 1}} = \dfrac{1}{2} - \dfrac{1}{{{u_{n + 1}} + 1}}\)
Xét hiệu \({u_{n + 1}} - {u_n} = u_n^2 + 3{u_n} + 1 - {u_n} = {\left( {{u_n} + 1} \right)^2} > 0\)
$ \Rightarrow \left( {{u_n}} \right)$ là dãy tăng.
Giả sử \(\lim {u_{n + 1}} = \lim {u_n} = a > 0 \Rightarrow a = {a^2} + 3a + 1 \Rightarrow {a^2} + 2a + 1 = 0 \Leftrightarrow a = - 1\,\,\left( {ktm} \right) \Rightarrow \lim {u_n} = + \infty \)
$ \Rightarrow \lim {v_n} = \dfrac{1}{2} - \dfrac{1}{{{u_{n + 1}} + 1}} = \dfrac{1}{2} - 0 = \dfrac{1}{2}.$
Hướng dẫn giải:
- Biến đổi, rút gọn biểu thức${v_n}$ rồi tính giới hạn.