Cho dãy số $({u_n})$ xác định bởi $\left\{ \begin{align} & u_{1}=2 \\ & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1) \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?
Trả lời bởi giáo viên
\(\begin{array}{l}{u_2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} = \dfrac{{{2^1} + 1}}{{{2^1}}}\\{u_3} = \dfrac{{\dfrac{3}{2} + 1}}{2} = \dfrac{5}{4} = \dfrac{{{2^2} + 1}}{{{2^2}}}\\{u_4} = \dfrac{{\dfrac{5}{4} + 1}}{2} = \dfrac{9}{8} = \dfrac{{{2^3} + 1}}{{{2^3}}}\end{array}\)
Chứng minh bằng quy nạp: ${u_{n + 1}} = \dfrac{{{2^n} + 1}}{{{2^n}}},\,\,\forall n = 1;2;...\,\,\,\,(*)$:
* Với $n = 1$: ${u_2} = \dfrac{{{u_1} + 1}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{{{2^1} + 1}}{{{2^1}}}$ : (*) đúng
* Giả sử (*) đúng với $n = k \ge 1$, tức là ${u_k} = \dfrac{{{2^k} + 1}}{{{2^k}}}$ ta chứng minh (*) đúng với $n = k + 1$ , tức là cần chứng minh ${u_{k + 1}} = \dfrac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}$
Ta có : ${u_{k + 1}} = \dfrac{{{u_k} + 1}}{2} = \dfrac{{\dfrac{{{2^k} + 1}}{{{2^k}}} + 1}}{2} = \dfrac{{\dfrac{{{2^k} + 1 + {2^k}}}{{{2^k}}}}}{2} = \dfrac{{{{2.2}^k} + 1}}{{{2^{k + 1}}}} = \dfrac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}$
Theo nguyên lý quy nạp, ta chứng minh được (*).
Như vậy, công thức tổng quát của dãy $({u_n})$là: ${u_n} = \dfrac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}} = 1 + \dfrac{1}{{{2^{n - 1}}}},\,\,\forall n = 1;2;...\,\,\,\,(*)$
Từ (*) ta có \({u_{n + 1}} - {u_n} = 1 + \dfrac{1}{{{2^n}}} - \left( {1 + \dfrac{1}{{{2^{n - 1}}}}} \right) \) \(= \dfrac{1}{{{2^n}}} - \dfrac{1}{{{2^{n + 1}}}} < 0\,\,\forall n = 1,2,... \Rightarrow \left( {{u_n}} \right)\) là dãy giảm và \(\lim {u_n} = \lim \left( {1 + \dfrac{1}{{{2^{n - 1}}}}} \right) = 1 \Rightarrow \)$({u_n})$ là dãy giảm tới $1$ khi $n \to + \infty $
Hướng dẫn giải:
- Tính ${u_2},\,{u_3},...$, từ đó dự đoán công thức tổng quát của dãy số.
- Rút ra nhận xét.