Cho biểu thức \(P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\).
Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:
Trả lời bởi giáo viên
Ta có $x = 3 + 2\sqrt 2 $$ = {\left( {\sqrt 2 + 1} \right)^2}$
$\Rightarrow \sqrt x = \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} = \sqrt 2 + 1$
Thay $\sqrt x = \sqrt 2 + 1$ vào biểu thức $P$ ta được
$P = \dfrac{{\sqrt 2 + 1 + 1}}{{\sqrt 2 + 1 - 2}} = \dfrac{{\sqrt 2 + 2}}{{\sqrt 2 - 1}}$
$ = \dfrac{{\left( {\sqrt 2 + 2} \right)\left( {\sqrt 2 + 1} \right)}}{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 1} \right)}} $
$= 4 + 3\sqrt 2 $
Hướng dẫn giải:
- Sử dụng hằng đẳng thức ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2};\sqrt {{A^2}} = \left| A \right|$ để rút gọn biến số trước khi thay vào biểu thức.
- Thay giá trị của biến (thỏa mãn điều kiện) vào biểu thức và thực hiện phép tính.