Câu hỏi:
2 năm trước

Cho \(B = \dfrac{2}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3  - \sqrt 2 }} - \dfrac{2}{{\sqrt 3  - 1}}\) và \(C = \left( {2\sqrt 3  - 5\sqrt {27}  + 4\sqrt {12} } \right):\sqrt 3 \). Chọn đáp án đúng.

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có \(B = \dfrac{2}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3  - \sqrt 2 }} - \dfrac{2}{{\sqrt 3  - 1}}\)

\( = \dfrac{{2\sqrt 2 }}{{\sqrt 2 .\sqrt 2 }} + \dfrac{{\sqrt 3  + \sqrt 2 }}{{\left( {\sqrt 3  - \sqrt 2 } \right)\left( {\sqrt 3  + \sqrt 2 } \right)}} - \dfrac{{2\left( {\sqrt 3  + 1} \right)}}{{\left( {\sqrt 3  - 1} \right)\left( {\sqrt 3  + 1} \right)}}\)

$
= \dfrac{{2\sqrt 2 }}{2} + \dfrac{{\sqrt 3 + \sqrt 2 }}{{3 - 2}} - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{3 - 1}}$
$= \sqrt 2 + \dfrac{{\sqrt 3 + \sqrt 2 }}{1} - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{2}$

\( = \sqrt 2  + \sqrt 3  + \sqrt 2  - \left( {\sqrt 3  + 1} \right)\)

\( = \sqrt 2  + \sqrt 3  + \sqrt 2  - \sqrt 3  - 1\)

\( = 2\sqrt 2  - 1\)

Lại có

$\begin{array}{l}C = (2\sqrt 3  - 5\sqrt {27}  + 4\sqrt {12} ):\sqrt 3 \\  = \left( {2\sqrt 3 - 5\sqrt {9.3} + 4\sqrt {4.3} } \right):\sqrt 3 \\= (2\sqrt 3  - 5.3\sqrt 3  + 4.2\sqrt 3 ):\sqrt 3 \\ =  - 5\sqrt 3 :\sqrt 3 \\ =  - 5\end{array}$

Nhận thấy \(B = 2\sqrt 2  - 1 > 0;\,C =  - 5 < 0 \Rightarrow B > C\)

Hướng dẫn giải:

+ Tính \(B;C\)  bằng cách sử dụng các công thức

Với \(A > 0\) và \(A \ne {B^2}\) thì \(\dfrac{C}{{\sqrt A  \pm B}} = \dfrac{{C(\sqrt A  \mp B)}}{{A - {B^2}}}\)

Khai phương một tích: \(\sqrt {A.B}  = \sqrt A .\sqrt B {\rm{   }}(A \ge 0,B \ge 0)\)

+ So sánh \(B;C.\)

Câu hỏi khác