Cho \(\dfrac{{4{x^2} + 3x - 7}}{A} = \dfrac{{4x + 7}}{{x + 3}}\) \(\left( {x \ne - 3;x \ne \dfrac{{ - 7}}{4}} \right)\) . Khi đó đa thức \(A\) là
Trả lời bởi giáo viên
Ta có với \(x \ne - 3\) và \(x \ne \dfrac{{ - 7}}{4}\) thì \(\dfrac{{4{x^2} + 3x - 7}}{A} = \dfrac{{4x + 7}}{{x + 3}}\)\( \Rightarrow A.\left( {4x + 7} \right) = \left( {4{x^2} + 3x - 7} \right)\left( {x + 3} \right)\)
\( \Leftrightarrow A = \dfrac{{\left( {4{x^2} - 4x + 7x - 7} \right)\left( {x + 3} \right)}}{{\left( {4x + 7} \right)}}\) \( = \dfrac{{\left[ {4x\left( {x - 1} \right) + 7\left( {x - 1} \right)} \right]\left( {x + 3} \right)}}{{4x + 7}} = \dfrac{{\left( {4x + 7} \right)\left( {x - 1} \right)\left( {x + 3} \right)}}{{4x + 7}}\)
\( = \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {4x + 7} \right):\left( {4x + 7} \right)}}{{\left( {4x + 7} \right):\left( {4x + 7} \right)}} = \left( {x - 1} \right)\left( {x + 3} \right) = {x^2} + 2x - 3\)
Vậy \(A = {x^2} + 2x - 3\) .
Hướng dẫn giải:
Sử dụng điều kiện để hai phân thức bằng nhau:
Với hai phân thức \(\dfrac{A}{B}\) và \(\dfrac{C}{D}\)\(\left( {B \ne 0,\,D \ne 0} \right)\) , ta nói \(\dfrac{A}{B} = \dfrac{C}{D}\) nếu$A.D = B.C$ .