Cho 24 điểm trong đó có 6 điểm thẳng hàng. Qua 2 điểm ta kẻ được một đường thẳng. Hỏi kẻ được tất cả bao nhiêu đường thẳng?
Trả lời bởi giáo viên
Giả sử trong 24 điểm không có 3 điểm nào thẳng hàng tất cả vẽ được:
$\dfrac{{24.(24 - 1)}}{2} = 276$ (đường thẳng)
Qua 6 điểm thẳng hàng vẽ được số đường thẳng là: $\dfrac{{6.(6 - 1)}}{2} = 15$ (đường thẳng)
Nhưng qua 6 điểm thẳng hàng chỉ vẽ được một đường thẳng
Nên qua 24 điểm trong đó có 6 điểm thẳng hàng vẽ được:
$276 - 15 + 1 = 262$ (đường thẳng)
Hướng dẫn giải:
Ta sử dụng công thức tính số đường thẳng tạo bởi n điểm phân biệt \(\left( {n \ge 2} \right)\) trong đó không có ba điểm nào thảng hàng: \(\dfrac{{n\left( {n - 1} \right)}}{2}\)
+ Giả sử 24 điểm không có 3 điểm nào thẳng hàng. Tính số đường thẳng vẽ được qua 24 điểm
+ Tính số đường thẳng vẽ được qua 6 điểm (giả sử 6 điểm không có 3 điểm nào thẳng hàng)
+ Số đường thẳng vẽ được qua 6 điểm thẳng hàng
+ Tính số đường thẳng vẽ được qua 24 điểm trong đó có 6 điểm thẳng hàng