Câu hỏi:
1 năm trước

Biết \((x - 1)f(x) = (x + 4)f(x + 8)\). Vậy f(x) có ít nhất bao nhiêu nghiệm.

Trả lời bởi giáo viên

Đáp án đúng: b

Vì \((x - 1)f(x) = (x + 4)f(x + 8)\)với mọi x nên suy ra:

  • Khi x – 1 = 0, hay x = 1 thì ta có:

 \((1 - 1).f(1) = (1 + 4)f(1 + 8) \Rightarrow 0.f(1) = 5.f(9)\,\,\, \Rightarrow f(9) = 0\)

Vậy x = 9 là một nghiệm của  f(x).

  • Khi x + 4 = 0, hay x = –4 thì ta có: \(( - 4 - 1).f( - 4) = ( - 4 + 4).f( - 4 + 8)\,\,\, \Rightarrow - 5.f( - 4) = 0.f(4) \Rightarrow f( - 4) = 0\)

Vậy x =  –4  là một nghiệm của  f(x).

Vậy f(x) có ít nhất 2 nghiệm là 9 và –4.

Hướng dẫn giải:

Nếu f(a) = 0 thì a là nghiệm của đa thức f(x).

Câu hỏi khác