Tìm GTLN của biểu thức M = $\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}$ với a,b,c>0, a+b+c=1.
1 câu trả lời
Cách 1: Dùng BĐT Bunhiacopxki
Áp dụng BĐT Bunhiacopxki, ta có:
`M^2 = (\sqrt{a + 1} + \sqrt{b + 1} + \sqrt{c + 1})^2`
`= (1.\sqrt{a + 1} + 1. \sqrt{b + 1} + 1. \sqrt{c + 1})^2 ≤ (1^2 + 1^2 + 1^2)[(\sqrt{a + 1})^2 + (\sqrt{b + 1})^2 + (\sqrt{c + 1})^2] = 3(a + 1 + b + 1 + c + 1) = 3(1 + 3) = 12`
$\\$
Ta được: `M^2 ≤ 12`
`⇔ M ≤ 2\sqrt{3}`
Vậy GTLN của `M` là: `2\sqrt{3}` khi: `a = b = c = 1/3`
Cách 2: Dùng BĐT Cô - si
Áp dụng BĐT Cô - si, ta có:
$\dfrac{2}{\sqrt{3}}$.`\sqrt{a + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{a + 1})^2}{2} =` $\dfrac{\dfrac{4}{3} + a + 1}{2}$ `=` $\dfrac{\dfrac{7}{3} + a}{2}$
$\\$
$\dfrac{2}{\sqrt{3}}$.`\sqrt{b + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{b + 1})^2}{2} =` $\dfrac{\dfrac{4}{3} + b + 1}{2}$ `=` $\dfrac{\dfrac{7}{3} + b}{2}$
$\\$
$\dfrac{2}{\sqrt{3}}$.`\sqrt{c + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{c + 1})^2}{2} =` $\dfrac{\dfrac{4}{3} + c + 1}{2}$ `=` $\dfrac{\dfrac{7}{3} + c }{2}$
`⇒` $\dfrac{2}{\sqrt{3}}$.`\sqrt{a + 1} +` $\dfrac{2}{\sqrt{3}}$.`\sqrt{b + 1} +` $\dfrac{2}{\sqrt{3}}$.`\sqrt{c + 1} ≤` $\dfrac{\dfrac{7}{3} + a}{2}$ `+` $\dfrac{\dfrac{7}{3} + b}{2}$ `+` $\dfrac{\dfrac{7}{3} + c}{2}$
`⇔` $\dfrac{2}{\sqrt{3}}$`.(\sqrt{a + 1} + \sqrt{b + 1} + \sqrt{c + 1}) ≤` $\dfrac{\dfrac{7}{3} + a}{2}$ `+` $\dfrac{\dfrac{7}{3} + b}{2}$ `+` $\dfrac{\dfrac{7}{3} + c}{2}$
$\\$
`⇔` $\dfrac{2}{\sqrt{3}}$`.M ≤` $\dfrac{\dfrac{7}{3} + a}{2}$ `+` $\dfrac{\dfrac{7}{3} + b}{2}$ `+` $\dfrac{\dfrac{7}{3} + c}{2}$ `=` $\dfrac{\dfrac{7}{3} + a + \dfrac{7}{3} + b + \dfrac{7}{3} + c}{2}$ `=` $\dfrac{\dfrac{7}{3} + \dfrac{7}{3} + \dfrac{7}{3} + 1}{2}$ `= 4`
$\\$
`⇔ M ≤` $\dfrac{4}{\dfrac{2}{\sqrt{3}}}$ `= 2\sqrt{3}`
Vậy GTLN của `M` là: `2\sqrt{3}` khi: `a = b = c = 1/3`