S= 1 + $\dfrac{1}{1!}$ + $\dfrac{1}{2!}$ + $\dfrac{1}{3!}$ +........+ $\dfrac{1}{2001!}$ CM : S < 3

2 câu trả lời

Đáp án+Giải thích các bước giải:

$S$ = $1$ + $\dfrac{1}{1!}$ + $\dfrac{1}{2!}$ + $\dfrac{1}{3!}$ + ........ + $\dfrac{1}{2001!}$ 

$S$ < $1$ + $1$ + $($ $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + ....... + $\dfrac{1}{2000.2001}$ $)$

$S$ < $2$ + $($ $1$ - $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\dfrac{1}{3}$ +......+ $\dfrac{1}{2000}$ - $\dfrac{1}{2001}$ $)$

$S$ < $2$ + $($ $1$ - $\dfrac{1}{2001}$ $)$ = $3$ - $\dfrac{1}{2001}$ < $3$

Vậy $S$ < $3$

 

 

Ta có:

$S=1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+.....+\dfrac{1}{2001!}$

$=1+1+\dfrac{1}{2!}+\dfrac{1}{3!}+......+\dfrac{1}{2001!}$

Đặt: $P=\dfrac{1}{2!}+\dfrac{1}{3!}+.......+\dfrac{1}{2001!}$

Ta thấy: $P<\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{2000.2001}$

$⇒P<\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{2000}-\dfrac{1}{2001}$

$⇒P<1-\dfrac{1}{2001}$

$⇒S<3-\dfrac{1}{2001}$

$⇒S<3$

$→$ đpcm