S= 1 + $\dfrac{1}{1!}$ + $\dfrac{1}{2!}$ + $\dfrac{1}{3!}$ +........+ $\dfrac{1}{2001!}$ CM : S < 3
2 câu trả lời
Đáp án+Giải thích các bước giải:
$S$ = $1$ + $\dfrac{1}{1!}$ + $\dfrac{1}{2!}$ + $\dfrac{1}{3!}$ + ........ + $\dfrac{1}{2001!}$
$S$ < $1$ + $1$ + $($ $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + ....... + $\dfrac{1}{2000.2001}$ $)$
$S$ < $2$ + $($ $1$ - $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\dfrac{1}{3}$ +......+ $\dfrac{1}{2000}$ - $\dfrac{1}{2001}$ $)$
$S$ < $2$ + $($ $1$ - $\dfrac{1}{2001}$ $)$ = $3$ - $\dfrac{1}{2001}$ < $3$
Vậy $S$ < $3$
Ta có:
$S=1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+.....+\dfrac{1}{2001!}$
$=1+1+\dfrac{1}{2!}+\dfrac{1}{3!}+......+\dfrac{1}{2001!}$
Đặt: $P=\dfrac{1}{2!}+\dfrac{1}{3!}+.......+\dfrac{1}{2001!}$
Ta thấy: $P<\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{2000.2001}$
$⇒P<\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{2000}-\dfrac{1}{2001}$
$⇒P<1-\dfrac{1}{2001}$
$⇒S<3-\dfrac{1}{2001}$
$⇒S<3$
$→$ đpcm