pt (m^2-4m+3)x=m^2-3m+2 có tập no là R khi

2 câu trả lời

Đáp án: m=1

 

Giải thích các bước giải:

 Phương trình có tập nghiệm là R khi và chỉ khi:

$\left\{ \begin{array}{l}
{m^2} - 4m + 3 = 0\\
{m^2} - 3m + 2 = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m = 1\\
m = 3
\end{array} \right.\\
\left[ \begin{array}{l}
m = 1\\
m = 2
\end{array} \right.
\end{array} \right. \Rightarrow m = 1$

Vậy m=1 thì pt có tập nghiệm R

$m^2-4m+3=0\Leftrightarrow (m-3)(m-1)=0\Leftrightarrow m=3; m=1$

$m^2-3m+2=0\Leftrightarrow (m-2)(m-1)=0\Leftrightarrow m=2; m=1$ 

Để $(m^2-4m+3)x=m^2-3m+2$ có $S=\mathbb{R}$ thì $m^2-4m+3=m^2-3m+2=0$

$\to m=1$

Câu hỏi trong lớp Xem thêm