2 câu trả lời
Đáp án:
\[ = \left( {x - y} \right)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right).\] Lời giải: \[\begin{array}{l} 16{x^4}\left( {x - y} \right) - x + y\\ = 16{x^4}\left( {x - y} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {16{x^4} - 1} \right)\\ = \left( {x - y} \right)\left[ {{{\left( {4{x^2}} \right)}^2} - 1} \right]\\ = \left( {x - y} \right)\left( {4{x^2} - 1} \right)\left( {4{x^2} + 1} \right)\\ = \left( {x - y} \right)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right). \end{array}\]
Đáp án:
Lời giải: $$\eqalign{ & 16{x^4}\left( {x - y} \right) - x + y \cr & = 16{x^4}\left( {x - y} \right) - \left( {x - y} \right) \cr & = \left( {x - y} \right)\left( {16{x^4} - 1} \right) \cr & = \left( {x - y} \right)\left( {4{x^2} - 1} \right)\left( {4{x^2} + 1} \right) \cr & = \left( {x - y} \right)\left( {2x + 1} \right)\left( {2x - 1} \right)\left( {4{x^2} + 1} \right) \cr} $$