Một vật rơi tự do từ độ cao h, biết rằng trong giây cuối cùng, vật rơi được quãng đường gấp 2 lần 2 giây đầu tiên, lấy g = 10m/s2. Tính độ cao h và vận tốc khi chạm đất
2 câu trả lời
Đáp án:
h = 101,25m v = 45m/s
Giải thích các bước giải:
Gọi t là thời gian vật rơi tự do. Quãng đường vật rơi trong giây cuối cùng và 2 giây đầu tiên là: \(\eqalign{ & {s_{1c}} = {s_t} - {s_{t - 1}} = {1 \over 2}.g.{t^2} - {1 \over 2}.g{\left( {t - 1} \right)^2} \cr & \,\,\,\,\,\, = 5{t^2} - 5{\left( {t - 1} \right)^2} = 10t - 5\,\,\left( m \right) \cr & {s_{2d}} = {1 \over 2}.g{.2^2} = {1 \over 2}{.10.2^2} = 20m \cr} \) Theo bài ra ta có trong giây cuối cùng, vật rơi được quãng đường gấp 2 lần 2 giây đầu tiên: \({s_{1c}} = 2{s_{2d}} \Leftrightarrow 10t - 5 = 2.20 \Rightarrow t = 4,5s\) Độ cao h là: \(h = {1 \over 2}g.{t^2} = {1 \over 2}{.10.4,5^2} = 101,25m\) Vận tốc của vật khi chạm đất: \(v = gt = 10.4,5 = 45m/s\)
Đáp án:
Quãng đường vật rơi được trong giây cuối cùng là:
Δs=1/2g$t^{2}$ -1/2g$(t-1)^{2}$
=5$t^{2}$-5$(t-1)^{2}$
=5$t^{2}$-5$t^{2}$+10t-5
=10t-5 (m)
Quãng đường vật rơi được trong 2s đầu tiên là:
s'=1/2g$t^{2}$
=1/2.10. $2^{2}$
=20 (m)
Theo đề bài:
Δs=2s'
<=> 10t-5=2.20
<=> t=4,5 (s)
Độ cao h là:
h=s=1/2g$t^{2}$=1/2.10. $4,5^{2}$ =101,25 (m)
Vận tốc khi chạm đất là:
v=gt=10.4,5=45 (m/s)
Giải thích các bước giải: