Lưu ý : / = phần , ^ = mũ Tính tổng : A = 1 + 1/2 + 1/2^2 + 1/2^3 / + 1/2^4 + ...+ 1/2^99 + 1/2^100 Cần gấp ạ cảm ơn
2 câu trả lời
Đáp án + Giải thích các bước giải:
`A=1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^99+1/2^100`
`=>1/2A=1/2.(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^99+1/2^100)`
`=>1/2A=1/2+1/2^2+1/2^3+1/2^4+1/2^5...+1/2^100+1/2^101`
`=>A-1/2A=(1/2+1/2^2+1/2^3+1/2^4+1/2^5...+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^99+1/2^100)`
`=>1/2A=1/2^101-1=1/2^101-2^101/2^101=(1-2^101)/(2^101)`
`=>A=(1-2^101)/(2^101):1/2=(1-2^101)/(2^101) .2=(2(1-2^101))/(2^101)=(1-2^101)/(2^100)`
Vậy `A=(1-2^101)/(2^100)`
Đáp án:
`A={1-2^101}/2^100`
Giải thích các bước giải:
`A=1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^99+1/2^100 `
`=>1/2A=1/2+1/2^2+1/2^3+1/2^4+1/2^5...+1/2^100+1/2^101`
`=>1/2A-A=(1/2+1/2^2+1/2^3+1/2^4+1/2^5...+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^99+1/2^100)`
`=>1/2A=1/2^101 -1`
`=>1/2A={1-2^101}/2^101`
`=>A={1-2^101}/2^101 :1/2`
`=>A={1-2^101}/2^101 . 2`
`=>A={2(1-2^101)}/2^101`
`=>A={1-2^101}/2^100`
Vậy `A={1-2^101}/2^100`