giải pt `a,(2x+5)(x-4)+3x-12=0` `b, (2-1)^2 -(x+1)^2=0` `c, x^3-2x^2+2-x=0` `d, x^2+10x+25=(x-1)(x+5)`

2 câu trả lời

Đáp án:

`a)`

`(2x+5)(x-4)+3x-12=0`

`⇔(2x+5)(x-4)+3(x-4)=0`

`⇔(x-4)(2x+5+3)=0`

`⇔(x-4)(2x+8)=0`

`⇔(x-4).2(x+4)=0`

`⇔(x-4)(x+4)=0`

`⇔x^(2)-16=0`

`⇔x^2=16`

`⇔x=+-4`

Vậy `S={+-4}`

`b)`

* Sửa đề :

`(2x-1)^(2)-(x+1)^2=0`

`⇔(2x-1-x-1)(2x-1+x+1)=0`

`⇔(x-2).3x=0`

$⇔\left[\begin{matrix}x-2=0\\ 3x=0\end{matrix}\right.$

$⇔\left[\begin{matrix}x=2\\ x=0\end{matrix}\right.$

Vậy `S={2;0}`

`c)`

`x^(3)-2x^(2)+2-x=0`

`⇔x^(3)-2x^(2)-x+2=0`

`⇔x^(2)(x-2)-(x-2)=0`

`⇔(x-2)(x^(2)-1)=0`

`⇔(x-2)(x-1)(x+1)=0`

$⇔\left[\begin{matrix}x-2=0\\ x-1=0\\ x+1=0\end{matrix}\right.$

$⇔\left[\begin{matrix}x=2\\ x=1\\ x=-1\end{matrix}\right.$

Vậy `S={2;+-1}`

`d)`

`x^(2)+10x+25=(x-1)(x+5)`

`⇔x^(2)+2.x.5+5^2=(x-1)(x+5)`

`⇔(x+5)^(2)-(x-1)(x+5)=0`

`⇔(x+5)(x+5-x+1)=0`

`⇔6(x+5)=0`

`⇔x+5=0`

`⇔x=-5`

Vậy `S={-5}`

Đáp án:

`a,` `(2x+5).(x−4)+3x−12=0`

`⇔ (2x+5).(x−4)+3.(x - 4) = 0`

`⇔ (x-  4).(2x + 5 + 3) = 0`

`⇔ (x-  4).(2x + 8) = 0`

`⇔ 2.(x - 4).(x + 4) = 0`

`⇔ (x - 4).(x + 4) = 0`

`⇔` \(\left[ \begin{array}{l}x - 4 = 0\\x + 4 = 0\end{array} \right.\)

`⇔` \(\left[ \begin{array}{l}x = 4\\x = -4\end{array} \right.\)

Vậy `S = {4;-4}`

_____________________________

`b,` `(2−1)^2−(x+1)^2=0`

`⇔ 1^2 - (x+1)^2=0`

`⇔ (x+1)^2 = 1`

`<=>` \(\left[ \begin{array}{l}x + 1 = 1\\x + 1 = -1\end{array} \right.\)

`<=>` \(\left[ \begin{array}{l}x = 0\\x = -2\end{array} \right.\)

Vậy `S = {0; -2}`

_____________________________

`c,` `x^3−2x^2+2−x=0`

`⇔x^3−2x^2−x+2=0`

`⇔x^2.(x−2)−(x−2)=0`

`⇔(x−2).(x^2−1)=0`

`⇔(x−2).(x−1).(x+1)=0`

`<=>` \(\left[ \begin{array}{l}x - 1 = 0\\x + 1 =0\\x - 2 = 0\end{array} \right.\)

`<=>` \(\left[ \begin{array}{l}x = 1\\x = -1\\x = 2\end{array} \right.\)

Vậy `S = {+-1; 2}`

_____________________________

`d,` `x^2+10x+25=(x−1).(x+5)`

`⇔(x+5)^2−(x−1).(x+5)=0`

`⇔(x+5).(x+5−x+1)=0`

`⇔6.(x+5)=0`

`<=> x + 5 = 0`

`<=> x = -5`

Vậy `S = {-5}`

`#dariana`