Giải phương trình: (x+3)$\sqrt[2]{x+4}$ + (x+9)$\sqrt[2]{x+11}$ = $x^{2}$ + 9x +10
2 câu trả lời
Đáp án:
\[x = 5\]
Giải thích các bước giải:
ĐKXĐ: \(x \ge - 4\)
Ta có:
\(\begin{array}{l}
\left( {x + 3} \right)\sqrt {x + 4} + \left( {x + 9} \right)\sqrt {x + 11} = {x^2} + 9x + 10\\
\Leftrightarrow \left( {x + 3} \right).\left( {\sqrt {x + 4} - 3} \right) + \left( {x + 9} \right)\left( {\sqrt {x + 11} - 4} \right) = {x^2} + 9x + 10 - 3\left( {x + 3} \right) - 4\left( {x + 9} \right)\\
\Leftrightarrow \left( {x + 3} \right).\frac{{x + 4 - {3^2}}}{{\sqrt {x + 4} + 3}} + \left( {x + 9} \right).\frac{{x + 11 - {4^2}}}{{\sqrt {x + 11} + 4}} = {x^2} + 2x - 35\\
\Leftrightarrow \frac{{\left( {x + 3} \right)\left( {x - 5} \right)}}{{\sqrt {x + 4} + 3}} + \frac{{\left( {x + 9} \right)\left( {x - 5} \right)}}{{\sqrt {x + 11} + 4}} = \left( {x - 5} \right)\left( {x + 7} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = 5\\
\frac{{x + 3}}{{\sqrt {x + 4} + 3}} + \frac{{x + 9}}{{\sqrt {x + 11} + 4}} = x + 7\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)
\end{array} \right.\\
\left( 1 \right) \Leftrightarrow x + 7 - \frac{{x + 3}}{{\sqrt {x + 4} + 3}} - \frac{{x + 9}}{{\sqrt {x + 11} + 4}} = 0\\
\Leftrightarrow 2x + 14 - \frac{{2x + 6}}{{\sqrt {x + 4} + 3}} - \frac{{2x + 18}}{{\sqrt {x + 11} + 4}} = 0\\
\Leftrightarrow \left[ {\left( {x + 4} \right) - \frac{{2x + 6}}{{\sqrt {x + 4} + 3}}} \right] + \left[ {\left( {x + 10} \right) - \frac{{2x + 18}}{{\sqrt {x + 11} + 4}}} \right] = 0\\
\Leftrightarrow \frac{{\left( {x + 4} \right)\sqrt {x + 4} + 3x + 12 - 2x - 6}}{{\sqrt {x + 4} + 3}} + \frac{{\left( {x + 10} \right)\sqrt {x + 11} + 4x + 40 - 2x - 18}}{{\sqrt {x + 11} + 4}} = 0\\
\Leftrightarrow \frac{{\left( {x + 4} \right)\sqrt {x + 4} + x + 6}}{{\sqrt {x + 4} + 3}} + \frac{{\left( {x + 10} \right)\sqrt {x + 11} + 2x + 22}}{{\sqrt {x + 11} + 4}} = 0\\
x \ge - 4 \Rightarrow \frac{{\left( {x + 4} \right)\sqrt {x + 4} + x + 6}}{{\sqrt {x + 4} + 3}} + \frac{{\left( {x + 10} \right)\sqrt {x + 11} + 2x + 22}}{{\sqrt {x + 11} + 4}} > 0
\end{array}\)
Suy ra phương trình (1) vô nghiệm
Vậy \(x = 5\)