Giải phương trình a , (2x + 1)^2 = (x - 1)^2 b , (x + 6) (3x - 1) = 36 - x ^2 c, x^3 + 3x^2 - 4x - 12 = 0 mn giúp e vs ạ .

2 câu trả lời

Đáp án+Giải thích các bước giải:

 `a)` $(2x+1)^2=(x-1)^2$

`⇔` $4x^2+4x+1=x^2-2x+1$

`⇔` $3x^2+6x=0$

`⇔` $3x(x+2)=0$

`⇔` $\left[\begin{matrix} 3x=0\\ x+2=0\end{matrix}\right.$

`⇔` $\left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.$

`b)` $(x+6)(3x-1)=36-x^2$

`⇔`  $(x+6)(3x-1)=(6+x)(6-x)$

`⇔` $(x+6)(3x-1)-(x+6)(6-x)=0$

`⇔` $(x+6)[(3x-1)-(6-x)]=0$

`⇔` $(x+6)(3x-1-6+x)=0$

`⇔` $(x+6)(4x-7)=0$

`⇔` $\left[\begin{matrix} x+6=0\\ 4x-7=0\end{matrix}\right.$

`⇔` $\left[\begin{matrix} x=-6\\ x=\dfrac{7}{4}\end{matrix}\right.$

`c)` $x^3+3x^2-4x-12=0$

`⇔` $(x^3+3x^2)+(-4x-12)=0$

`⇔` $x^2(x+3)-4(x+3)=0$

`⇔` $(x+3)(x^2-4)=0$

`⇔` $\left[\begin{matrix} x+3=0\\ x^2-4=0\end{matrix}\right.$

`⇔` $\left[\begin{matrix} x=-3\\ |x|= $\sqrt[]{4}$ \end{matrix}\right.$

`⇔` $\left[\begin{matrix} x=-3\\ x=±2\end{matrix}\right.$

`#thanh`

`#` `chúc` `bn` `học` `tốt`

Đáp án:

 $a$ $)$ $(2x+1)^2= (x-1)^2$

$⇔ (2x+1)^2-(x-1)^2=0$

$⇔ (2x+1-x+1).(2x+1+x-1)=0$

$⇔ (x+2).3x=0$

$⇔$  \(\left[ \begin{array}{l}x+2=0\\3x=0\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x=-2\\x=0\end{array} \right.\) 

$\text{Vậy S={0; -2}}$

$b) (x+6).(3x-1)= 36-x^2$

$⇔ (x+6).(3x-1)- (6-x).(x+6)=0$

$⇔ (x+6).(3x-1-6+x)=0$

$⇔ (x+6).(4x-7)=0$

$⇔$ \(\left[ \begin{array}{l}x+6=0\\4x-7=0\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x=-6\\4x=7\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x=-6\\x=1,75\end{array} \right.\) 

$\text{Vậy S={-6; 1,75}}$

$c) x^3+3x^2-4x-12=0$

$⇔ x².(x+3)-4.(x+3)=0$

$⇔ (x²-4).(x+3)=0$

$⇔$ \(\left[ \begin{array}{l}x^2-4=0\\x+3=0\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x^2=4\\x=-3\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x=±2\\x=-3\end{array} \right.\) 

$\text{Vậy S={±2;-3}}$