Giải phương trình: (3-2x)2+4x2-9=0 x-5/100 + x-4/101 + x-3/102 = x-100/5 + x-101/4 + x-102/3
2 câu trả lời
$(3-2x)^2+4x^2-9=0$
$⇔(2x-3)^2+(2x-3)(2x+3)=0$
$⇔(2x-3)(2x-3+2x+3)=0$
$⇔4x(2x-3)=0$
$⇔$ \(\left[ \begin{array}{l}x=0\\x=\dfrac{3}{2} \end{array} \right.\)
Vậy `S={0;\frac{3}{2}}`
$b,$ $\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}$
$⇔\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1$
$⇔\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-102}{3}=0$
$⇔(x-105)(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3})=0$
Vì: $\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3} \neq 0$
$⇔x-105=0$
$⇔x=105$
a) `(3-2x)^2+4x^2-9=0`
`↔(3-2x)^2+[(2x)^2-3^2]=0`
`↔(3-2x)^2+(2x-3)(2x+3)=0`
`↔(3-2x)^2-(3-2x)(2x+3)=0`
`↔(3-2x)(3-2x-2x-3)=0`
`↔(3-2x)4x=0`
`↔`\(\left[ \begin{array}{l}3-2x=0\\4x=0\end{array} \right.\)
`↔`\(\left[ \begin{array}{l}x=3/2\\x=0\end{array} \right.\)
Vậy `S={3/2;0}`
b) `{x-5}/{100}+{x-4}/{101}+{x-3}/{102}={x-100}/5+{x-101}/4+{x-102}/3`
`→{x-5}/{100}+{x-4}/{101}+{x-3}/{102}-3={x-100}/5+{x-101}/4+{x-102}/3-3`
`↔({x-5}/{100}-1)+({x-4}/{101}-1)+({x-3}/{102}-1)=({x-100}/5-1)+({x-101}/4-1)+({x-102}/3-1)`
`↔{x-105}/{100}+{x-105}/{101}+{x-105}/{102}={x-105}/{5}+{x-105}/{4}+{x-105}/{3}`
`↔{x-105}/{100}+{x-105}/{101}+{x-105}/{102}-{x-105}/{5}-{x-105}/{4}-{x-105}/{3}=0`
`↔(x-105).(1/{100}+1/{101}+1/{102}-1/5-1/4-1/3)=0`
`→x-105=0` (Vì `(1/{100}+1/{101}+1/{102}-1/5-1/4-1/3)≠0`)
`↔x=105`
Vậy `S={105}`