chứng minh xy(x^2 + y^2) nhỏ hơn hoặc bằng 2 với x,y lớn hơn 0 và x+y=2

1 câu trả lời

Đáp án:

Giải thích các bước giải:

ta có $xy(x^{2}+y^{2})=xy((x^{2}+y^{2}+2xy)-2xy)=xy((x+y)^{2}-2xy)=xy(4-2xy)=2-2((xy)^{2}-2xy+1)=2-(xy-1)^{2}\leq2$

dấu = xảy ra khi x=y=1