Chứng minh rằng: ( sin³ x . sin³ x ) + ( cos³ x . cos³ x ) = 1 - 3sin² x . cos² x
2 câu trả lời
Ta xét
$VT = (\sin^3x . \sin^3x) + (\cos^3x . \cos^3x)$
$= \sin^6x + \cos^6x$
$= (\sin^2x)^3 + (\cos^2x)^3$
$= (\sin^2x + \cos^2x)(\sin^4x + \cos^4x - \sin^2x \cos^2x)$
$= \sin^4x + \cos^4x - \sin^2x \cos^2x$
$= (\sin^2x)^2 + (\cos^2x)^2 + 2\sin^2x \cos^2x - 2\sin^2x \cos^2x - \sin^2x \cos^2x$
$= (\sin^2x + \cos^2x)^2 - 3\sin^2x \cos^2x$
$= 1 - 3\sin^2x \cos^2x = VP$.
$VT=(\sin^3a.\sin^3a)+(\cos^3a.\cos^3a)$
$=\cos^6a+\sin^6a$
$=(\cos^2a)^3+(\sin^2a)^3$
$=(\cos^2a+\sin^2a)(\cos^4a-\cos^2a.\sin^2a+\sin^4a)$
$= \cos^4a+\sin^4a-\sin^2a\cos^2a$
$= (\cos^2a+\sin^2a)^2-2\sin^2a\cos^2a-\sin^2a\cos^2a$
$= 1-3\sin^2a\cos^2a$
$= VP$