Cho tana - 3cota =6 và π/2

1 câu trả lời

Đáp án:

\(\sin a + \cos a =  - \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 - 2\sqrt 3 } \right)\)

Giải thích các bước giải:

\(\begin{array}{l}
\tan a - 3\cot a = 6\,\,\,\left( {\frac{\pi }{2} < a < \pi } \right)\\
 \Leftrightarrow \tan a - \frac{3}{{\tan a}} = 6\\
 \Leftrightarrow {\tan ^2}a - 6\tan a - 3 = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
\tan a = 3 + 2\sqrt 3 \\
\tan a = 3 - 2\sqrt 3 
\end{array} \right.\\
Do\,\,\,\frac{\pi }{2} < a < \pi  \Rightarrow \left\{ \begin{array}{l}
\tan a < 0\\
\sin a > 0\\
\cos a < 0
\end{array} \right.\\
 \Rightarrow \tan a = 3 - 2\sqrt 3 .\\
Ta\,\,co:\,\,\,{\tan ^2}a + 1 = \frac{1}{{{{\cos }^2}a}}\\
 \Leftrightarrow {\cos ^2}a = \frac{1}{{{{\tan }^2}a + 1}} = \frac{1}{{{{\left( {3 - 2\sqrt 3 } \right)}^2} + 1}} = \frac{{11 + 6\sqrt 3 }}{{26}}\\
 \Rightarrow \cos a =  - \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
 \Rightarrow \sin a = \tan a.\cos a =  - \left( {3 - 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
 \Rightarrow \sin a + \cos a =  - \left( {3 - 2\sqrt 3 } \right).\sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}}  - \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \\
 =  - \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {3 - 2\sqrt 3  + 1} \right)\\
 =  - \sqrt {\frac{{11 + 6\sqrt 3 }}{{26}}} \left( {4 - 2\sqrt 3 } \right).
\end{array}\)

Câu hỏi trong lớp Xem thêm