Cho tam giác ABC , có AB=2, AC=3 , BAC=60 . Gọi M là điểm thuộc cạnh BC , đặt $\overrightarrow{BM}$ = x$\overrightarrow{BC}$ . Tìm x biết `\vec{AM}``\vec{BC}` = $\frac{5}{2}$
1 câu trả lời
$\begin{array}{l}
\bullet \overrightarrow {BM} = x\overrightarrow {BC} \\
\Leftrightarrow \overrightarrow {AM} - \overrightarrow {AB} = x\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\\
\Leftrightarrow \overrightarrow {AM} = x\overrightarrow {AC} - \left( {x - 1} \right)\overrightarrow {AB} \\
\bullet \overrightarrow {AM} .\overrightarrow {BC} = \dfrac{5}{2} \Leftrightarrow \left[ {x\overrightarrow {AC} - \left( {x - 1} \right)\overrightarrow {AB} } \right]\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \dfrac{5}{2}\\
\Leftrightarrow x.A{C^2} - x\overrightarrow {AC} .\overrightarrow {AB} - \left( {x - 1} \right)\overrightarrow {AC} .\overrightarrow {AB} + \left( {x - 1} \right)A{B^2} = \dfrac{5}{2}\\
\Leftrightarrow x.A{C^2} - \left( {2x - 1} \right)\overrightarrow {AC} .\overrightarrow {AB} + \left( {x - 1} \right)A{B^2} = \dfrac{5}{2}\\
\Leftrightarrow 9x - \left( {2x - 1} \right).3.2.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) + \left( {x - 1} \right).4 = \dfrac{5}{2}\\
\Leftrightarrow 9x - \left( {2x - 1} \right).6.\cos {60^o} + \left( {x - 1} \right).4 = \dfrac{5}{2}\\
\Leftrightarrow 9x - 3\left( {2x - 1} \right) + \left( {x - 1} \right).4 = \dfrac{5}{2}\\
\Leftrightarrow 7x - 1 = \dfrac{5}{2} \Leftrightarrow x = \dfrac{1}{2}
\end{array}$