Cho tam giác ABC cân tại A.Gọi M,N,P lần lượt là trung điểm của AB,AC,BC. a)CM:BPNM là hình bình hành b) Gọi H là điểm đối xứng của P qua M.CM:AHBP là hình chữ nhật c) Tìm điều kiện của tam giác ABC để tứ giác AMPN là hình vuông
2 câu trả lời
a,Xét tam giác ABC có:
N là trung điểm AC
P là trung điểm BC
Suy ra NP là đường trung bình của tam giác ABC và NP bằng 1/2 AB và song song với AB
Xét tứ giác BPNM có:
NP//MB (vì NP=AM mà AM=MB)
NP=MB(vì NP và MB cùng bằng 1/2 AB
Vậy tứ giác BPNM là hình bình hành
b,Xét tứ giác AHBP có:
M là trung điểm PH
M là trung điểm AB
Suy ra tứ giác AHBP là hình bình hành
Lại có: goc P=90 độ do P là trung điểm BC và tam giác ABC cân tại góc A nên AP là đường cao
Vậy tứ giác AHBP là hình chữ nhật
c,Điều kiện để tứ giác AMPN là hình vuông khi:
1 trong 4 góc có vuông(nghĩa là góc A,B,C,hoặcD vuông)
Hoặc AP=NM(nghĩa là 2 đường chéo bằng nhau
CHÚC BẠN HỌC TỐT~~Nếu thấy hay thì hãy chọn mk nha!
a) Ta có MN//BP (vì MN là đường trung bình của tam giác ABC). Tương tự ta cũng có NP//MB ==> BMNP là hình bình hành.
b) Tam giác ABC có AP là đường trung tuyến đồng thời là đường cao ==> AP⊥BP (1). Ta lại có: $\left \{ {{AM=MB } \atop {MP=HM}} \right.$ ==> AHBP là hình bình hành (2). Từ (1) và (2) ==> AHBP là hình chữ nhật.
c) AMPN là hình vuông khi AP=AM√2 hay AP=$\frac{ABcăn2}{2}$ ==> cosBAP=AP/AB=(căn2)/2==> BAP=45 độ. Mà AP là đường phân giác của góc BAC nên BAC=90 độ. Vậy khi tam giác ABC vuông cân thì AMPN là hình vuông.