Cho khai triển biểu thức {\left( {{2^{\frac{{x - 1}}{2}}} + {2^{ - \frac{x}{3}}}} \right)^n} = C_n^0{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^n} + C_n^1{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^{n - 1}}\left( {{2^{ - \frac{x}{3}}}} \right) + ... + C_n^n{\left( {{2^{ - \frac{x}{3}}}} \right)^n} biết rằng trong khai triển đó C_n^3 = 5C_n^1 và số hạng thứ tư bằng 20n. Tìm n và x.

1 câu trả lời

Đáp án:

\(n=7\) và \(x=4.\)

Giải thích các bước giải: \(\begin{array}{l} {\left( {{2^{\frac{{x - 1}}{2}}} + {2^{ - \frac{x}{3}}}} \right)^n} = C_n^0{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^n} + C_n^1{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^{n - 1}}\left( {{2^{ - \frac{x}{3}}}} \right) + ... + C_n^n{\left( {{2^{ - \frac{x}{3}}}} \right)^n}\\ C_n^3 = 5C_n^1 \Leftrightarrow \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 5.\frac{{n!}}{{1!\left( {n - 1} \right)!}}\\ \Leftrightarrow \frac{1}{{6\left( {n - 3} \right)!}} = \frac{5}{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}\\ \Leftrightarrow \left( {n - 1} \right)\left( {n - 2} \right) = 30\\ \Leftrightarrow {n^2} - 3n + 2 - 30 = 0\\ \Leftrightarrow {n^2} - 3n - 28 = 0\\ \Leftrightarrow \left[ \begin{array}{l} n = - 4\,\,\left( {ktm} \right)\\ n = 7\,\,\,\left( {tm} \right) \end{array} \right..\\ So\,\,hang\,\,thu\,\,4\,\,bang\,\,20n\\ \Rightarrow C_n^3{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^{n - 3}}{\left( {{2^{ - \frac{x}{3}}}} \right)^3} = 20n\\ \Leftrightarrow C_7^3{\left( {{2^{\frac{{x - 1}}{2}}}} \right)^{7 - 3}}{\left( {{2^{ - \frac{x}{3}}}} \right)^3} = 20.7\\ \Leftrightarrow {35.2^{2\left( {x - 1} \right)}}{.2^{ - x}} = 140\\ \Leftrightarrow {2^{x - 2}} = 4\\ \Leftrightarrow x - 2 = 2\\ \Leftrightarrow x = 4. \end{array}\)

Câu hỏi trong lớp Xem thêm