2 câu trả lời
Answer
G=115+135+163+...
G = 1/{3 xx 5} + 1/{5 xx 7} + 1/{7 xx 9} + ... + 1/{49 xx 51}
G = 2/2 xx (1/{3 xx 5} + 1/{5 xx 7} + 1/{7 xx 9} + ... + 1/{49 xx 51})
G = 1/2 xx (2/{3 xx 5} + 2/{5 xx 7} + 2/{7 xx 9} + ... + 2/{49 xx 51})
G = 1/2 xx (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/49 - 1/51)
G = 1/2 xx (1/3 - 1/51)
G = 1/2 xx 16/51
G = 8/51
Vậy G = 8/51
Đáp án:
Giải thích các bước giải:
G = 1/15 + 1/35 + 1/63 +...+ 1/2499
G = 1/(3 . 5) + 1/(5 . 7) + 1/(7 . 9) + ... + 1/(49 . 51)
2 . G = 2. (1/(3 . 5) + 1/(5 . 7) +1/(7 . 9) + ... + 1/(49 . 51))
2G = 2/(3 . 5) + 2/(5 . 7) + 2/(7 . 9) + ... + 2/(49 . 51)
2G = (5 - 3)/(3 . 5) + (7 - 5)/(5 . 7) + (9 - 7)/(7 . 9) + .... + (51 - 49)/(49 . 51)
2G = 5/(3 . 5) - 3/(3 . 5) + 7/(5 . 7) - 5/(5 . 7) + 9/(7 . 9) - 7/(7 . 9) + ....+ 51/(49 . 51) - 49/(49 . 51)
2G = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +.... + 1/49 - 1/51
2G = 1/3 - 1/51
2G = 48/153 = 16/51
G = 16/51 : 2 = 16/102 = 8/51