2 câu trả lời
Giải thích các bước giải:
|$\frac{2x-1}{x+3}$ |$\geq$ 3 (điều kiện: x $\neq$ -3
$\left \{ {{\frac{2x-1}{x+3} \geq3} \atop {\frac{2x-1}{x+3}\leq-3}} \right.$
$\left \{ {{2x - 1 \geq 3(x +3)} \atop {2x-1\leq-3(x+3)}} \right.$
$\left \{ {{2x - 1 \geq 3x +9} \atop {2x-1\leq-3x-9}} \right.$
$\left \{ {{2x -3x \geq 1 +9} \atop {2x+3x\leq1-9}} \right.$
$\left \{ {$\left \{ {{x \leq -10} \atop {x\leq-8/10}} \right.$
x$\leq$-10
Chúc bạn học tốt !!!
Câu hỏi trong lớp
Xem thêm