2 câu trả lời
Đáp án:
$\begin{array}{l}23-4.\left(-x+1\right)^2=-173\\\Rightarrow 4.\left(1-x\right)=23+173\\\Rightarrow \left(1-x\right)^2=\dfrac{196}4\\\Rightarrow \left(1-x\right)^2=49\\\Rightarrow \left(1-x\right)=7^2=\left(-7\right)^2\\\Rightarrow 1-x=7\ \ \ \ {\rm{or}}\ \ \ \ 1-x=-7\\\Rightarrow x=-6\quad\quad {\rm{or}}\ \ \ \ x=8\end{array}$
Vậy $x\in\{-6;8\}$.
Giải thích các bước giải:
#andy
\[\begin{array}{l}
23 - 4{\left( { - x + 1} \right)^2} = - 173\\
\Leftrightarrow 23 - x\left( {{x^2} - 2x + 1} \right) + 173 = 0\\
\Leftrightarrow 23 - 4{x^2} + 8x - 4 + 173 = 0\\
\Leftrightarrow 192 - 4{x^2} + 8x + 173 = 0\\
\Leftrightarrow 192 - 4{x^2} + 8x = 0\\
\Leftrightarrow 4\left( {48 - {x^2} + 8} \right) = 0\\
\Leftrightarrow - {x^2} + 2x + 48 = 0\\
\Leftrightarrow - {x^2} + 8x - 6x + 48 = 0\\
\Leftrightarrow \left( { - {x^2} + 8x} \right) + \left( { - 6x + 48} \right) = 0\\
\Leftrightarrow - x\left( {x + 8} \right) - 6\left( {x - 8} \right) = 0\\
\Leftrightarrow \left( { - x - 6} \right)\left( {x - 8} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
- x - 6 = 0\\
x - 8 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 6\\
x = 8
\end{array} \right.\\
\Rightarrow S = \left\{ { - 6;8} \right\}
\end{array}\]