Trả lời bởi giáo viên
Đáp án đúng: c
Với $n = 2$ ta có: \({3^2} = 9 > 3.2 + 2\)
Ta chứng minh đáp án C đúng bằng phương pháp quy nạp toán học.
Bất đẳng thức đúng với $n = 2$, giả sử bất đẳng thức đúng đến $n = k (k \ge 2)$, tức là \({3^k} > 3k + 2\).
Ta chứng minh bất đẳng thức đúng đến $n = k + 1$, tức là cần phải chứng minh \({3^{k + 1}} > 3\left( {k + 1} \right) + 2 = 3k + 5\)
Ta có: \({3^{k + 1}} = {3.3^k} > 3\left( {3k + 2} \right) \) \(= 9k + 6 > 3k + 5\)
Vậy bất đằng thức đúng với mọi số tự nhiên \(n \ge 2\)
Hướng dẫn giải:
Thử một giá trị bất kì của $n$ thỏa mãn $n$ là số nguyên dương và dự đoán kết quả.
Chứng minh kết quả vừa dự đoán là đúng bằng phương pháp quy nạp toán học.