Trong mặt phẳng với hệ tọa độ $Oxy,$ cho hình chữ nhật $ABCD$ có điểm $I\left( {6;2} \right)$ là giao điểm của $2$ đường chéo $AC$ và $BD.$ Điểm $M\left( {1;5} \right)$ thuộc đường thẳng $AB$ và trung điểm $E$ của cạnh $CD$ thuộc đường thẳng $\Delta :x + y-5 = 0.$ Viết phương trình đường thẳng $AB.$
Trả lời bởi giáo viên
$I\left( {6;2} \right);M\left( {1;5} \right)$
$\Delta :x + y-5 = 0,E \in \Delta \Rightarrow E\left( {m;5-m} \right);$
Gọi \(N\) là trung điểm của \(AB\)
$I$ trung điểm $NE$ $ \Rightarrow \left\{ \begin{array}{l}{x_N} = 2{x_I} - {x_E} = 12 - m\\{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1\end{array} \right.$ $ \Rightarrow N\left( {12-m;m-1} \right)$
$\overrightarrow {MN} = \left( {11-m;m-6} \right);$ $\overrightarrow {IE} = \left( {m - 6;5-m-2} \right) = \left( {m-6;3-m} \right)$
$\overrightarrow {MN} .\overrightarrow {IE} = 0$$ \Leftrightarrow \left( {11-m} \right)\left( {m-6} \right) + \left( {m-6} \right)\left( {3-m} \right) = 0$
$ \Leftrightarrow \left[ \begin{array}{l}m-6 = 0\\14 - 2m = 0\end{array} \right.$ \( \Leftrightarrow \left[ \begin{array}{l}m = 6\\m = 7\end{array} \right.\)
+ $m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)$ nên phương trình $AB$ là $y = 5$
+ $m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)$ nên phương trình $AB$ là $x-4y + 19 = 0$
Hướng dẫn giải:
- Gọi tọa độ \(E\) theo phương trình \(\Delta \)
- Gọi \(N\) là trung điểm của \(AB\) suy ra tọa độ \(N\) theo \(E\) vừa gọi ở trên
- Sử dụng mối quan hệ \(MN \bot IE\) để tìm \(N,I\) rồi suy ra phương trình \(AB\)