Câu hỏi:
2 năm trước

Trong mặt phẳng $Oxy$ cho đường thẳng \(d:\,\,x - y + 4 = 0\). Hỏi trong $4$ đường thẳng cho bởi các phương trình sau, đường thẳng nào có thể biến thành $d$ qua phép quay tâm \(I\left( {0;3} \right)\) góc quay \(\pi \) ?

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi đường thẳng cần tìm là \(\Delta \), ta có: \({Q_{\left( {I;\pi } \right)}}:\,\,\Delta \,\, \mapsto \,\,d \Rightarrow {Q_{\left( {I; - \pi } \right)}}:\,\,d\,\, \mapsto \,\,\Delta \)

Ta lấy hai điểm bất kì thuộc $d$ và tìm ảnh của hai điểm đó qua phép quay \(Q\left( {I; - \pi } \right)\)

Lấy \(A\left( {0;4} \right);B\left( { - 4;0} \right) \in d\)

Gọi \(A',B'\) lần lượt là ảnh của $A$ và $B$ qua phép quay \(Q\left( {I; - \pi } \right)\)

Ta có: \(\left\{ \begin{array}{l}IA = IA'\\\widehat {AIA'} =  - {180^0}\end{array} \right. \Rightarrow \) I là trung điểm của  \(AA' \Rightarrow A'\left( {0;2} \right)\)

Tương tự ta có $I$ là trung điểm của  \(BB' \Rightarrow B'\left( {4;6} \right)\)

Vậy phương trình đường thẳng \(\Delta \) đi qua $A$ và $B$ là : \(\dfrac{{x - 0}}{{4 - 0}} = \dfrac{{y - 2}}{{6 - 2}} \Leftrightarrow \dfrac{x}{4} = \dfrac{{y - 2}}{4} \Leftrightarrow x - y + 2 = 0\)

Hướng dẫn giải:

Gọi đường thẳng cần tìm là \(\Delta \), ta có: \({Q_{\left( {I;\pi } \right)}}:\,\,\Delta \,\, \mapsto \,\,d \Rightarrow {Q_{\left( {I; - \pi } \right)}}:\,\,d\,\, \mapsto \,\,\Delta \)

Ta lấy hai điểm bất kì thuộc $d$ và tìm ảnh của hai điểm đó qua phép quay \(Q\left( {I; - \pi } \right)\) sau đó viết phương trình đường thẳng đi qua hai ảnh vừa tìm được, đó chính là đường thẳng cần tìm.

Giải thích thêm:

\({Q_{\left( {I;\pi } \right)}}\) và \({Q_{\left( {I; - \pi } \right)}}\) chính là phép đối xứng tâm $I$.

Câu hỏi khác