Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
Trả lời bởi giáo viên
$M$ nằm trên trục $Ox$, giả sử \(M(m;0;0)\).
Ta có
\(\begin{array}{l}MA = \sqrt {{{(m - 0)}^2} + {{(0 - 2)}^2} + {{(0 + 1)}^2}} = \sqrt {{m^2} + 5} \\MB = \sqrt {{{(m - 2)}^2} + {{(0 - 0)}^2} + {{(0 - 1)}^2}} = \sqrt {{{(m - 2)}^2} + 1} \end{array}\)
Suy ra
\(M{A^2} + M{B^2} = {m^2} + 5 + {(m - 2)^2} + 1 = 2{m^2} - 4m + 10 \)
$= 2({m^2} - 2m + 1) + 8 = 2{(m - 1)^2} + 8 \ge 8$
\(\min (M{A^2} + M{B^2}) = 8 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1\).
Vậy \(M(1;0;0)\)
Hướng dẫn giải:
Sử dụng công thức tính độ dài đoạn thẳng:
Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\)ta có:\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{({b_1} - {a_1})}^2} + {{({b_2} - {a_2})}^2} + {{({b_3} - {a_3})}^2}} \)
Giải thích thêm:
- Nhầm lẫn giữa tọa độ các điểm thuộc $Ox,Oy,Oz$
- Tính sai tọa độ các véc tơ.
- Nhớ sai công thức tính khoảng cách.