Trong không gian với hệ tọa độ $Oxyz$, cho ba vectơ \(\vec a = \left( {3; - 1; - 2} \right),\vec b = \left( {1;2;m} \right)\) và \(\vec c = \left( {5;1;7} \right)\). Giá trị \(m\) bằng bao nhiêu để \(\vec c = \left[ {\vec a,\vec b} \right]\).
Trả lời bởi giáo viên
Ta có: \(\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\2&m\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&3\\m&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 1}\\1&2\end{array}} \right|} \right) = \left( { - m + 4; - 2 - 3m;7} \right)\)
\(\vec c = \left[ {\vec a,\vec b} \right] \Leftrightarrow \left\{ \begin{array}{l} - m + 4 = 5\\ - 2 - 3m = 1\\7 = 7\end{array} \right. \Leftrightarrow m = - 1\)
Hướng dẫn giải:
- Tính tích có hướng \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\).
- Dùng điều kiện hai véc tơ bằng nhau để tìm \(m\): \(\overrightarrow {{u_1}} = \overrightarrow {{u_2}} \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\)